AF-3100 α
 General-purpose High-performance Inverter

General-Purpose High-Performance Inverter

AF-3100 α SERIES
 Sensorless Vector, Volts/Hertz and Closed Loop Vector

Type of AF-3100 α

AF312 ㄹ $-\frac{5 A 5-U}{5 A 5: 5.5 \mathrm{~kW} / 7.5 \mathrm{HP}}$

7A5:7.5kW/10 HP

011:11kW/15 HP

015:15kW/20 HP

022:22kW/30 HP

030:30kW/40 HP

037:37kW/50 HP

045:45kW/60 HP

055:55kW/75 HP

075:75kW/100 HP

2: 3-phase 200-230 V

4: 3-phase 380-460 V

Series name: AF-3100 α

Note: 22 kW to $75 \mathrm{~kW}, 380-460 \mathrm{~V}$ class only.

All types ensure silent operation

Adoption of the latest IGB technology ensures more silent and powerful operation.

High-performance auto-tuning

Just select the auto-tuning function, and the motor data are read automatically and the motor is controlled under optimum conditions.

Complete control functions

Three modes of operation:
Sensorless Vector, Volts/Hertz and Closed Loop Vector.

FEATURES AND BENEFITS

- High Precision Speed Control $\pm 0.2 \%$
- 120:1 Constant Torque Speed Range [Sensorless Vector Mode)
- Sensorless Vector Control Mode
- Volts/Hertz Mode
- Closed Loop Vector Mode [1000:1 Constant Torque Speed Range)
- 250\% Maximum

Starting Torque

(Vector Mode)

- High-performance Auto-tuning
- Multi-motor (B-mode)
- IGBT Technology
- 16 Preset Speeds

CONTENTS

Specifications 2, 3
Options and Peripheral Equipment. 12, 13
Operation Unit (OPU) 4
Connection Diagram 14
Display 5
Terminal Functions 15Parameter Menus6-9
Outside Dimensions 16, 17
Option Cards 10, 11

SPECIFICATIONS

200V class

Type		$\begin{aligned} & \hline \text { AF3122 } \\ & -5 A 5-U \end{aligned}$	$\begin{aligned} & \text { AF3122 } \\ & -7 A 5-U \end{aligned}$	$\begin{aligned} & \hline \text { AF3122 } \\ & -011-U \end{aligned}$	$\begin{aligned} & \text { AF3122 } \\ & -015-\mathrm{U} \end{aligned}$
Applicable motor output（kW）		5.5	7.5	11	15
	Rated capacity（kVA）Note 1	10	13	18	24
	Rated current（A）	24	32	44	56
	Rated overload current Note 2	150\％ 1 min；200\％ 0.5 sec			
	Rated voltage（V）Note 3	3－phase；200～230V			
금	Phase／voltage／frequency	3－phase；200～220V／50Hz，200～230V／60Hz			
－	Voltage \＆frequency variance	Voltage：－15\％and $+10 \%$ Frequency：$\pm 5 \%$			
高	Required power capacity（kVA）Note 4	7.6	10	15	20
产	Standard	Approx．10\％			
은	If option is used Type Torque	Braking resistor			
餅		150\％or greater，short duty cycle			
	Protective construction	Open Note 6		NEMA1	
	Cooling method	Forced air cooling			
	Approx．weight（kg）Note 6	9	9	11	16

Note 1：Rated output voltage is 220 V ．
2：The ratio（\％）to the rated current of the inverter．
3：The maximum output voltage will not exceed the supply voltage．Any desired voltage smaller than the supply voltage can be set．
4：If an AC line reactor（AC／DC：option）is used．
5：The braking torque and the operation rate are subject to the braking unit and braking resistor used．
6：UL Approved in open chassis only（enclosure same as all other models）．

400 V class

Type		$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { AF3124 } \\ -5 A 5-2 \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { AF3124 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { FF3124 } \\ -011-U \end{array}$	$\begin{array}{\|c\|} \hline \text { AF3124 } \\ -015-U \end{array}$	$\begin{array}{\|l\|} \hline \text { AF3124 } \\ -022-U \end{array}$	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { AF3124 } \\ -030-U \end{array}$	$\begin{aligned} & \text { AF3124 } \\ & -037-U \end{aligned}$	$\begin{array}{\|c\|} \hline \text { AF3124 } \\ -045-U \end{array}$	$\begin{array}{\|c} \hline \text { AF3124 } \\ -055-U \end{array}$	$\begin{aligned} & \hline \text { AF3124 } \\ & -075-U \end{aligned}$
Applicable motor output（kW）		5.5	7.5	11	15	22	30	37	45	55	75
	Rated capacity（kVA）Note 1	10	13	19	24	36	48	61	73	86	115
	Rated current（A）	13	16	24	32	48	64	80	96	112	150
	Rated overload current Note 2	$150 \% 1 \mathrm{~min} ; 200 \% 0.5 \mathrm{sec}$									
	Rated voltage（V）Note 3	3 －phase；380／V，400～440V and 460V									
	Phase／voltage／frequency	3－phase；380Vand 400～420V／50Hz；400～440V and 460V／60Hz									
	Voltage \＆frequency variance	Voltage：Within -15% and $+10 \%$ Frequency：Within $\pm 5 \%$									
	Required power capacity（kVA）Note 4	7.6	9.9	14	19	29	39	48	58	71	98
	Standard	Approx．10\％									
	If option is used Type Torque	Braking resistor				Braking resistor and braking unit					
		150\％or greater，short duty cycle				100\％or greater Note 5					
Protective construction		Open	Note 6	NEMA 1			ir cooling 32				
Cooling method		Forced air cooling									
Approx．weight（kg）		9	9	11	16	26		45	45	58	65

Note 1：The rated output voltage is 440 V ．
2：The ratio（\％）to the rated current of the inverter．
3：The maximum output voltage will not exceed the supply voltage．Any desired voltage smaller than the supply voltage can be set．
4：If an AC line reactor（AC／DC：option）is used．
5：The braking torque and the operation rate are subject to the braking unit and braking resistor used．
6：UL Approved in open chassis only（enclosure same as all other models）．

Control method

	Control method		Sensorless Flux Vector, V/Hz, Closed Loop Vector
	Output frequency range		0~400.00Hz
	Frequency adjustment resolution		0.01 Hz : Digital setting 1/1000 of max. output frequency: Analog setting
	Frequency accuracy		0.01% of preset frequency: Digital setting Within $\pm 0.5 \%$ of max. frequency $\left(25 \pm 10^{\circ} \mathrm{C}\right)$
	Carrier frequency		Variable: 2.5-14.45 The maximum carrier frequency decreases for 30 kW or greater.
	Voltage/frequency characteristics		Three separate V/Hz patterns are possible.
	Torque boosting		Manual boosting (variable: 0-30\%), automatic boosting, and sensorless speed control (automatic tuning)
	DC braking		Variable braking frequency start, $0.5-10 \mathrm{~Hz}$; operation time, $0-10 \mathrm{sec}$; operation voltage, $0-30 \%$.
	Acceleration/deceleration time		0.1-3,000 sec; selection of linear or S Curve; 1st and 2nd settings
	Frequency adjustment signal	Digital	Digital operation unit
		Analog	DC 0~5V, 0~8V, 0~10V, 4~20mA
$\overline{\mathrm{O}}$	Stall prevention		Variable: 0-200\% (Factory preset at 160\%)
\mid	Starting torque		200\% or greater if sensorless control is selected.
	Speed variance rate		$\pm 0.2 \%$ or less. The load is 0-100\% when sensorless control is selected.
	Trip-less operation		Current limit during constant speed operation, current limit during acceleration/deceleration, overvoltage stall prevention, instantaneous overcurrent limit function, and instantaneous stop restart function
	Operation input signal		Coast stop, external fault, FWD, REV rotation, external wiring. The following digital inputs are programmable. Note 1: Preset speed selection, JOG selection, 2nd acceleration/deceleration selection, B mode selection (See Note 2), operation command selection, frequency command selection, hold selection, frequency increase, frequency decrease, and catch on the fly start
	Output signal		Fault output via contacts FA and FB The following open collector outputs (See Note 3): Inverter fault output FA and FB, in operation, at frequency, frequency detection 1, frequency detection 2, current detection 1, current detection 2, start contact point ON, under-voltage, electronic thermal pre-alarm, stalling, retry attempt, torque detection 1, torque detection 2 , zero speed detection, and user alarm
	Operation function		Upper/lower limit frequency setting, jump frequency, frequency bias, and instantaneous stop restart operation
$\left\lvert\, \begin{aligned} & \frac{\lambda}{\pi} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}\right.$	Condition of operation		Output frequency, output voltage, output current, overload rate, custom display (display converted motor/load shaft speed (rpm) and line speed with unit indication), torque monitor, VRF monitor, IRF monitor, input/output contact point monitor, DC bus voltage, command frequency, cumulative operation time, ROM version, and two line display, such as output frequency and output current
	Preset information		Display of parameter and data
	Fault display		Upon a protective function (fault) the details are displayed. Up to four preceding errors can be displayed.
(Suggested locaton		Indoor. There shall be no corrosion, toxicity, inflammable gas, dust, or oil mist.
	Ambient temperature		-10 to $+40^{\circ} \mathrm{C}\left(+50^{\circ} \mathrm{C}\right.$ when installed inside the panel) Note 4
	Storage temperature		$-10^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
	Ambient humidity		90\% RH or less (Dew condensation not allowed)
	Altitude		1000 m or less above sea level
	Vibration		0.6 G or less (As per JIS C0911)

Note 1: Six out of eleven functions can be selected by setting parameters.
2: In addition to normal operation, the functions of
acceleration/deceleration, V/Hz pattern, boost, and stall prevention
can be changed. It is advantageous when two motors with different
capacities are controlled by one inverter.
3: Four out of 15 functions can be selected by setting the appropriate parameters.
4: The maximum allowable temperature of $50^{\circ} \mathrm{C}$ can be achieved by removing the front cover if the equipment is installed inside an enclosure.
5: The base is the speed (rpm) at the base frequency.

OPERATION UNIT (OPU)

Display
Easy to read LCD display. Two lines, 16 Characters (English and Japanese).

Data/Menu
This key is used for changing the position of the data/menu cursor.

"READY" (Green)
AF-3100 α is ready for operation when illuminated.

Characters or numerals highlighted by the cursor can be changed on the OPU.

Display menu

Monitor	M	O	0

The monitor mode displays parameters such as speed, current, faults, etc.

Menu C (Control related

 parameters)

Used for setting motor control related parameters.

Menu D

(B mode parameters)

Used for setting B mode related parameters.

Menu E
(Monitor related
parameters)
Used for setting monitor related parameters)

Menu F
(Special parameters)

Used for setting special parameters

PARAMETER MENUS

List of parameters

	Menu		Function	Display	Available Choices	Setting Unit	Factory Default	Ref. pg.
	A	00	Operation command mode	Operation command selection	0: Local; 1: Ext.	-	0: Local	35
		01	Frequency adjustment	Frequency adjustment	0.00~400.00Hz	0.01 Hz	10.00 Hz	
		02	Lower limit frequency	Lower Limit frequency	0.00~120.00Hz	0.01 Hz	0:00Hz	
		03	Upper limit frequency	Upper limit frequency	0.50~400.00Hz	0.01 Hz	120.00 Hz	
		04	1st acceleration time	Acceleration time	0.1~3000.0sec	0.1 sec	10.0 sec	
		05	1st deceleration time	Deceleration time	$0.1 \sim 3000.0 \mathrm{sec}$	0.1 sec	10.0sec	
		06	1st acceleration/deceleration mode	Acceleration/deceleration time	0: Linear acceleration; 1: S-Curve acceleration	-	0: Linear acceleration	
		07	1st S-Curve time	S-Curve time	0.0~3.0sec	0.1 sec	0.5 sec	
		08	V/Hz pattern selection	V/Hz pattern selection	0: Constant torque 1: Decreasing torque 2: Broken-line V/Hz	-	0: Constant torque	36
		09	Boost voltage setting	Manual torque boost	0.0~30.0\%	0.1\%	3.0\%	37
		10	Base frequency setting	Base frequency	1.00~400.00Hz	0.01 Hz	60.00 Hz	
		11	Base frequency/voltage setting	Base voltage	0.0~230.0 (460.0) V	0.1 V	(): For 460V Class	6
		12	Frequency command selection	Frequency command selection	0: Local \quad 1: VRF 5V 2: VRF 8V, $3:$ VRF 10 V 4: IRF 200mA	-	0: Local	37
		13	Command standard frequency	Command standard frequency	$1.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	60.00 Hz	
		14	Intermediate frequency	Intermediate frequency	0.00~400.00Hz	0.01 Hz	6.00 Hz	36
		15	Intermediate voltage	Intermediate voltage	0.0~230.0 (460.0) V	0.1 V	30.0(60.0)V	
		16	Boost selection	Boost selection	0 : FWD/REV provided 1: REV not provided; 2: FWD provided 3: Automatic	-	0: FWD/REV provided	37
		00	1st frequency setting	1st frequency setting	0.00~400.00Hz	0.01 Hz	20.00 Hz	
		01	2nd frequency setting	2nd frequency setting	0.00~400.00Hz	0.01 Hz	30.00 Hz	
		02	3rd frequency setting	3rd frequency setting	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	40.00 Hz	
		03	4th frequency setting	4th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	
		04	5th frequency setting	5 th frequency setting	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
		05	6th frequency setting	6th frequency setting	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
の		06	7th frequency setting	7th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	38
(1)		07	1st jump start frequency	1st jump frequency start	0.00~400.00Hz	0.01 Hz	0.00 Hz	
E		08	1st jump end frequency	1st jump frequency end	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
-		09	2nd jump start frequency	2nd jump frequency start	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
은		10	2nd jump end frequency	2nd jump frequency end	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
¢		11	3rd jump start frequency	3rd jump frequency start	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
		12	3rd jump end frequency	3rd jump frequency end	0.00~400.00Hz	0.01 Hz	0.00 Hz	
$\overline{\mathbf{0}}$		13	Jogging frequency setting	Jogging frequency	$0.00 \sim 20.00 \mathrm{~Hz}$	0.01 Hz	5.00 Hz	
$\underset{(}{\frac{C}{\sigma}}$	B	14	Start frequency setting	Start frequency	0.00~60.00Hz	0.01 Hz	0.50 Hz	
		15	Acceleration frequency	Acceleration frequency	$1.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	60.00 Hz	
$\dot{\theta}$		16	Frequeny bias	Frequency bias	-30.0~0.0~+30.0\%	0.1\%	0.0\%	39
름		17	2nd acceleration time	2nd acceleration time	0.1~3000sec	0.1 sec	30.0 sec	39
$\stackrel{\bar{\pi}}{\lambda}$		18	2nd deceleration time	2nd deceleration time	0.1~3000sec	0.1 sec	30.0 sec	
OC		19	2nd acceleration/deceleration mode	2nd acceleration/deceleration mode	0: Linear acceleration; 1: S-Curve acceleration	-	0: Linear acceleration time	
$\frac{\mathbf{0}}{\underline{D}}$		20	2nd S-Curve time	2nd S-Curve time	0.0~3.0sec	0.1 sec	0.5 sec	
민		21	8th frequency setting	8th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	
는		22	9th frequency setting	9th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	
		23	10th frequency setting	10th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	
		24	11th frequency setting	11th frequency setting	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	38
		25	12th frequency setting	12th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	38
		26	13th frequency setting	13th frequency setting	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	
		27	14th frequency setting	14th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	
		28	15th frequency setting	15th frequency setting	0.00~400.00Hz	0.01 Hz	0.00 Hz	

	Menu		Function	Display	Available Choices	Setting Unit	Factory Default	Ref. pg.
	C	00	DC braking frequency	DC braking frequency	0.00~10.00Hz	0.01 Hz	0.50 Hz	40
		01	DC braking voltage	DC braking voltage	0.0~30.0\%	0.1\%	0.0\%	
		02	DC braking time	DC braking time	0.0~10.0sec	0.1 sec	0.0 sec	
		03	Overvoltage stall prevention	Overvoltage stall prevention	0: Not provided; 1: Provided	-	0: Not provided	
		04	Regenerative braking rate	Regenerative braking rate	0.0~30.0\%	0.1\%	0.0\%	
		05	Stall prevention level at (constant speed)	Stall prevention (constant speed)	0.0~200.0\%	0.1\%	160.0\%	
		06	Stall prevention level (accel/decel)	Stall prevention (Acceleration/deceleration)	0.0~200.0\%	0.1\%	160.0\%	
		07	Constant output stall prevention compensation gain	Stall compensation gain	0.0~100.0\%	0.1\%	100.0\%	
		08	Motor rated current (Electronic thermal relay)	Electronic thermal relay	0.1 ~ Inverter rated current	0.1 A	Inverter rated current	
		09	Number of motor poles	Number of motor poles	0:4P, 1: 6P	-	0: 4P	
		10	Motor type setting	Motor type See parameter C12, page 47.	0 : General-purpose motor 1 1: General-purpose motor 2 2: General-purpose motor 3 3: AF motor 1; 4: AF motor 2 5: AF motor 3 6: Explosion-proof motor 1 7: Explosion-proof motor 2 8: Explosion-proof motor 3	-	$\begin{gathered} \text { 0: General } \\ \text { purpose motor } 1 \\ 200 \mathrm{~V} / 60 \mathrm{~Hz} \\ (400 \mathrm{~V} / 60 \mathrm{~Hz}) \end{gathered}$	
		11	Motor rated watts	Motor rated watts	0: 2.2kW, 1: 3.7 kW 2: $5.5 \mathrm{~kW}, 3: 7.5 \mathrm{~kW}$ 4: $11 \mathrm{~kW}, 5: 15 \mathrm{~kW}$ 6: 22kW, 7: 30kW 8: 37kW, 9: 45kW 10: 55kW, 11: 75kW	-	*kW	41
		12	Control method selection	Control selection	0: V/Hz; 1: Sensorless 2: PG level	-	V/Hz	
		13	Carrier frequency	Carrier frequency	$2.5 \mathrm{~Hz} \sim^{*} 145 \mathrm{kHz}$	0.5 kHz	*	
		14	Motor wiring cable dia. (Note)	Cable diameter	$3.5 \sim 325 \mathrm{~mm}^{2}$	-	$0: 3.5 \mathrm{~m}^{2}$	
		15	Motor wiring cable length (Note)	Cable length	10~1500m	1 m	10m	
		16	High start torque control selection	High start torque	0: Not provided; 1: Provided	-	0: Not provided	
		17	Energy saving control selection	Energy saving	0: Not provided; 1: Provided	-	0: Not provided	
		18	Droop control gain	Droop gain	0.0~50.0\%	0.1\%	0.0\%	
		19	Slip compensation	Slip compensation	0 : Provided; 1: FWD only provided 2: REV only provided 3: FWD/REV not provided 4: (future)	-	$0:$ FWD/REV provided	
		20	Motor rated current	Tuning current	0.1~409.6A	0.1A	*	
		21	Motor rated voltage	Tuning voltage	0.1~230.0 (460.0) V	0.1 V	200.0 (400.0) V	
		22	Motor rated frequency	Tuning frequency	$50.00 \sim 120.00 \mathrm{~Hz}$	0.01 Hz	60.00 Hz	42
		23	Motor rated speed (rpm)	Tuning speed (rpm)	1000.0~3600.0rpm	0.1 rpm	-	
		24	Auto tuning selection	Auto tuning selection	0 : End 1: Resistance only 2: Full tuning	-	0: End	
		00	B mode acceleration time	Acceleration time B	0.1~3000.0sec	0.1 sec	30.0sec	
		01	B mode deceleration time	Deceleration time B	0.1~3000.0sec	0.1 sec	30.0sec	
0		02	B mode acceleration/deceleration time	Accel/decel B mode	0 : Linear acceleration; 1-S-Curve acceleration	-	0: Linear acceleration	
$\stackrel{ \pm}{ \pm}$		03	B mode S-Curve time	S-Curve time B	0.0~3.0sec	0.1 sec	0.0sec	
		04	B mode V/Hz pattern selection	V/Hz pattern selection B	0: Low torque 1: Low limit torque 2: Break-point V/Hz	-	2: Broken-lineV/Hz	43
$\frac{2}{8}$		05	B mode boost voltage setting	Manual torque boost B	0.0~30.0\%	0.1\%	3.0\%	44
-		06	B mode base frequency setting	Base frequency B	1.00~400.00Hz	0.01 Hz	60.00 Hz	43
T		07	B mode base voltage setting	Base voltage B	0.0~230.0 (460.0) V	0.1 V	200.0 (400.0) V	43
$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	D	08	B mode constant-speed stall prevention level	Stall prevention B	0.0~200.0\%	0.1\%	160.0\%	
$\begin{aligned} & 0 \\ & \text { 를 } \end{aligned}$		09	B mode accel/decel stall prevention level	Stall prevention B	0.0~200.0\%	0.1\%	160.0\%	45
$\begin{gathered} \boldsymbol{m} \\ \mathbf{i} \end{gathered}$		10	B mode constant output stall prevention compensation gain	Stall compensation gain B	0.0~100.0\%	0.1\%	100.0\%	
$\stackrel{0}{0}$		11	B mode intermediate frequency	Intermediate frequency B	0.00~400.00Hz	0.01 Hz	6.00 Hz	43
\pm		12	B mode intermediate voltage	Intermediate voltage B	0.0~230.0 (460.0) V	0.1 V	30.0 (60.0)V	
		13	B mode boost selection	Boost selection B	0 : FWD/REV provided; 1:REV not provided 2: FWD not provided; 3: Automatic	-	$\begin{aligned} & \text { 0:FWD/REV } \\ & \text { PROVIDED } \end{aligned}$	44

[^0]*: Differs according to the rated capacity.

PARAMETER MENUS

	Menu		Function	Display	Available Choices	Setting Unit	Factory Default	Ref. pg.
		00	Output frequency detection 1	Frequency detection 1	0.00~400.00Hz	0.01 Hz	60.00 Hz	
		01	Output frequency detection width 1	Frequency detection width 1	0.00~400.00Hz	0.01 Hz	400.00 Hz	
		02	Frequency counter output selection	Frequency meter selection	0: Analog 1; 1: Analog 2 2: Digital 1; 3: Digital 2	-	0: Analog	
		03	Frequency counter scale	Frequency meter scale	1.00~400.00Hz	0.01 Hz	60.00 Hz	45
		04	Frequency counter correction	Frequency meter correction	-30.0~+30.0\%	0.1\%	0.0\%	
		05	Custom display mode unit	Custom display mode	0: No unit, 1: rpm 2: m/min	-	1: rpm	
		06	Custom display mode multiplier	Custom display multiplier	0.00~99.99	0.01	1.00	
		07	Digital output selection (X1)	Functional terminal selection (XI)	0: Fault; 1: In operation 2: At Frequency 3: Frequency 1 4: Frequency 2 5: Current 1; 6 Current 2 7: FR/RR ON (RUN) 8: Under-voltage 9: Thermal alarm 10: Stalling 11: Retry over 12: Torque detection 1 13: Torque detection 2 14: 0 speed 15: User alarm	-	9: Thermal alarm	46
		08	Digital output selection (X2)	Functional terminal selection (X2)	Same as above	-	10: Stalling	
		09	Output frequency detection 2	Frequency detection 2	$0.0 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	50.00 Hz	45
		10	Output frequeny detection width 2	Frequency detection width 2	$0.0 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	400.00 Hz	
¢		11	Current detection 1	Current detection 1	0.0~200.0\%	0.1\%	100.0\%	
\pm		12	Current detection 2	Current detection 2	0.0~200.0\%	0.1\%	150\%	
눈		13	Instantaneous stop/start selection	Instantaneous stop/start	0: Not provided; 1; Provided	-	0: Not provided	46
$\frac{0}{0}$		14	Number of retry attempts	Number of retry attempts	0~3 times	-	0 times	
\%	E	15	Retry wait time	Retry wait time	0.0~10.0sec	0.1 sec	1.0 sec	
$\underset{\underset{\pi}{ \pm}}{\square}$		16	Write selection	Write selection	0: enabled; 1: disabled	-	0: Possible	
0		17	Fault clear	Fault clear	-	-	0: Execute	
-		18	Preset value initialization	Preset value initialization	-	-	0 : Execute	
		19	Analog monitor AM1 selection	Analog monitor AM1	0: Output frequency 1: Frequency command 2: Output current 3: Output voltage 4: Overload rate; 5: Motor torque 6: Frequency 2	-	0 : Frequency	
		20	Analog monitor AM2 selection	Analog monitor AM2	Same as above	-	2. Current	
		21	Analog monitor AM1 gain	Monitor AM1 gain	0.0~200.0\%	0..1\%	100.0\%	
		22	Analog monitor AM2 gain	Monitor AM2 gain	0.0~200.0\%	0.1\%	100.0\%	
		23	Analog monitor AM1 offset	Monitor AM1 offset	0.0~100.0\%	0.1\%	0.0\%	
		24	Analog monitor AM2 offset	Monitor AM2 offset	0.0~100.0\%	0.1\%	0.0\%	
		25	Relay 1 output selection	Relay 1 selection	0: Fault; 1: In operation 2: At Frequency 3: Frequency 1 4: Frequency 2 5: Current 1 6: Current 2 7: FR/RR ON 8: Under-voltage 9: Thermal alarm 10: Stalling 11: Retry over 12: Torque detection 1 13: Torque detection 2 14: 0 speed 15: User alarm	-	0: Fault	47
		26	Relay 2 output selection	Relay 2 selection	Same as above	-	0 : Fault	
		27	Relay 1 output delay time	Relay 1 delay time	0.0~10.0sec	0.1 sec	0.0 sec	
		28	Relay 2 output delay time	Relay 2 delay time	0.0~10.0sec	0.1 sec	0.0 set	

Note: Display and setting of E19-E24 are possible when the analog monitor card is installed. (Refer to the section "Option Cards")
Display and setting of E25-E28 are possible when the relay card is installed. (Refer to the section "Option Cards")

	Menu		Function	Display	Available Choices	Setting Unit	Factory Default	Ref. pg.
	F	00	ES selection	ES selection	0: N.O. contact; 1: N.C. contact	-	0: N.O. (normally open)	
		01	DFL selection	DFL selection	0: Preset 0; 1: Preset 1 2: Preset 2; 3: Preset 3 4: JOG selection 5: Acceleration/deceleration 2 6: B mode selection 7: Operation command 8: Frequency command 9: Hold selection 10: FRQ up; 11: FRQ down 12: Catch on the Fly		0 : Preset 0	48
		02	DFM selection	DFM selection	Same as above	-	1: Preset 1	
		03	DFH selection	DFH selection	Same as above	-	2: Preset 2	
		04	JOG selection	JOG selection	Same as above	-	4: JOG selection	
		05	AD2 selection	AD2 selection	Same as above	-	5: Accel/Decel	
		06	BMD selection	BMD selection	Same as above	-	6: B mode selection	
		07	JOG acceleration time	JOG acceleration time	0.1~3000; 0.1 sec	0.1 sec	0.1 sec	
		08	JOG deceleration time	JOG deceleration time	0.1~3000; 0.1 sec	0.1 sec	0.1 sec	
		09	DRV selection	DRV selection	Same as E07/08	-	1: In operation	
		10	UPF selection	UPF selection	Same as E07/08	-	2: Frequency reaching	49
		11	At Frequency (UPF) limit settings	At Frequency limit	0.0~100.0\%	0.1\%	5.0\%	
		12	Torque detection level 1	Torque detect level 1	0.0~200.0\%	0.1\%	100.0\%	
		13	Torque detection level 2	Torque detect level 2	0.0~200.0\%	0.1\%	150.0\%	
		14	Permissible motor rotation	Rotation permission selection	0: FWD/REV 1: FWD only 2: REV only	-	0: FWD/REV	
		15	Permissible motor rotation	Rotation direction selection	$\begin{aligned} & \text { 0: Ordinary } \\ & \text { 1: FWD <-> REV } \end{aligned}$	-	0: Ordinary	
		16	Display language selection	Language selection	0: Japanese; 1: English	-	1: English	
		17	Operation command mode 2 selection	Operation command 2	0: Local; 1: Ext.	-	0: Local	
		18	Frequency command 2 selection	Frequency command 2	0: Local; 1: VRF 5V 2: VRF 8V; 3: VRF 10 V 4: IRF 20mA	-	0: Local	
		19	Monitor menu selection	Monitor menu	M00~M19	-	M00	50
		20	Accel/decel jump frequency (start)	At frequency accel jump (begin)	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	400.00 Hz	
		21	Accel/decel jump frequency (end)	At frequency accel jump (end)	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz	400.00 Hz	
		22	Accel/decel time jump freq gain	At frequency acceleration gain	0.1~10.0	0.1	1.0	
		23	User alarm time	User alarm time	0~30000hr	1 hr	30000hr	
		24	DRV terminal output delay time	DRV delay time	0.0~10.0sec	0.1 sec	0.0 sec	
		25	UPF terminal output delay time	UPF delay time	0.0~10.0sec	0.1 sec	0.0 sec	
		26	X1 terminal output delay time	X1 delay time	0.0~10.0sec	0.1 sec	0.0 sec	
		27	X2 terminal output delay time	X2 delay time	0.0~10.0sec	0.1 sec	0.0 sec	
		28	Torque detect 1	Torque detect 1	0 : Normal operation 1: Slow speed only 2: Fault during operation 3: Slow speed fault only	-	0: Normal operation	
		29	Torque detect 2	Torque detect 2	Same as above	-	0: Normal operation	

OPTION CARDS

Option Cards: Only one option card can be used.

1. Relay output card

Part Number: CF310051-01

Function: The open collector output signal is converted into the dry contact signal. Parameters E25 and E26 can be used.
Contact rating: 230 VAC, 1 A ; 30 VDC, 1A

Relay to output	Terminal block	Details of detection
RY1	R1C	Output selected by relay 1 output selection (E25)
RY2	R1B	R2C

2. Analog monitor card

Part Number: CF310050-01
Function: Two signals for output are selected from among the following: output frequency, frequency adjustment, output current, output voltage, and motor torque.

Resolution ... $5 \mathrm{mV} / 10 \mathrm{~V}$
Error ... Within $\pm 1 \%$ (Motor torque: Within $\pm 20 \%$)
Max. output current ... 3 mA
Selection of output signal: The analog signals output to AM1-COM (Parameter E19) and AM2-COM (Parameter E20) are selected as follows:

Output signal: (1) Analog output: 0-10 VDC

Setting	Signal Description	Signal Level 10 V DC = 100\% gain
0	Output frequency	Standard frequency (Parameter A13 setting)
1	Command frequency	Standard frequency (Parameter A13 setting)
2	Output current	Rated current for inverter
3	Output voltage	Base frequency/voltage
4	Overload rate	Electronic thermal trip level
5	Motor torque	When motor is 100\% loaded
6	Output speed (rpm)	Standard frequency (Parameter A13 setting)

Internal block diagram

If this option is selected, E19 and E24 are automatically added to the parameter menu.

Menu	Function	Setting range	Setting for shipment
E19	Selection of output signal from terminals AM1 and COM	$0 \sim 6$	0 (Output frequency)
E20	Selection of output signal from terminals AM2 and COM	$0 \sim 6$	0 (Output frequency)
E21	Gain control for the signal selected for output AM1	$0 \sim 200 \%$	100%
E22	Gain control for the signal selected for output AM2	$0 \sim 200 \%$	100%
E23	Offset control for the signal selected for AM1	$0 \sim 100 \%$	0%
E24	Offset control for the signal selected for AM2	$0 \sim 100 \%$	0

[^1]

3. Pulse Generator (PG) Feedback Option

If this option is mounted, E29 through E35 are automatically added to the parameter menu.
Type: CF31057-01
Indication:
Function: Allows the AF3100 α to operate in the vector mode with feedback from the Pulse Generator (PG). The PG card installs in the AF3100 α.

Note:
For Analyog Output Signal parameters (E19 to E24) refer to the AF3100a Maintenance Manual or the AF3100a Catalog Parameters E19 through E24 allow programming the output signals AM1 and AM2.

Parameter	Function	Range	Factory Setting
E29	PG Pulse Count	100 ~ 5000	1024
E30	PG Standard Phase Selection	0 or 1	0
E31	Speed Proportional Gian	0.0 ~ 500\%	100\%
E32	Speed Integral Gain	0.0 ~ 500\%	100\%
E33	Disturbance Observer Gain	0.0 ~ 100\%	70\%
E34	Disturbance Observer Compensation Time	$0.01 \sim 9.99$ seconds	0.05
E35	\% Torque Limit Command (see parameter C05)	0: Panel, 1:0-5V; 0-8V, 2: 08V; 3: 0-10V, 4: 0-20ma	0

Settings for Analog Monitor Output Signals for AM1 and AM2. Refer to parameters E19 and E20.

Setting	Signal Description	Signal Level 10 V DC = 100\% gain
0	Output frequency	Full Scale w/gain $=100 \%$ Vout + 10 Volts
1	Command frequency	Command Frequency
2	Output current	Rated Current for Inverter
3	Output voltage	Base Frequency Voltage
4	Overload rate	Electronic Thermal Trip
5	Motor torque	100% motor load
6	Output speed (rpm)	Standard frequency command

PG Card
Relay Card
Analog Card

OPTIONS AND PERIPHERAL EQUIPMENT

Connection of Peripheral Equipment

AC Line Reactor

240V @ 6\% 480		480V @ 3\%			
Voltage	HP	kW	Current	Watts	SMA Part No.
230 Volt	7.5	5.5	24	36	AEPA3901-T09
	10	7.5	33	55	AEPA3901-T10
	15	11	47	70	AEPA3901-T12
	20	15	63	105	AEPA3901-T13
$\begin{gathered} 380-460 \\ \text { Volt } \end{gathered}$	7.5	5.5	13	38	AEPA3901-T07
	10	7.5	17	40	AEPA3901-T08
	15	11	25	48	AEPA3901-T09
	20	15	33	70	AEPA3901-T10
	30	22	48	113	AEPA3901-T12
	40	30	66	129	AEPA3901-T13
	50	37	80	129	AEPA3901-T13
	60	45	100	152	AEPA3901-C14
	75	55	120	148	AEPA3901-C15
	100	75	160	165	AEPA3901-C16

Dimensions

Height		Width		Depth	
in	mm	in	$\mathbf{m m}$	in	mm
12	305	12	305	6	152
12	305	12	305	6	152
12	305	12	305	6	152
16	406	16	406	16	406
8	203	8	203	6	152
12	305	12	305	6	152
12	305	12	305	6	152
12	305	12	305	6	152
12	305	12	305	6	152
16	406	16	406	16	406
16	406	16	406	16	406
16	406	16	406	16	406
16	406	16	406	16	406
16	406	16	406	16	406

NEMA 1 (Specify if Open Chassis required) $\quad \mathrm{T}=$ Terminal Block
C = Copper Bar

Dynamic Braking Resistors \& Dimensions (150\% Torque, 10\% Duty Cycle)

AF-3100 α Ratings				Dimensions						Braking Unit	Stages perUnit
Voltage	HP	kW	DBR Model No.	Height		Width		Depth			
Votage				in	mm	in	mm	in	mm		
$\begin{gathered} 200-230 \\ \text { Volt } \end{gathered}$	7.5	5.5	DBR-12-5A5	5	127	14	356	13	330	*	
	10	7.5	DBR-12-7A5	5	127	14	356	13	330	*	
	15	11	DBR-12-011	5	127	21	533	13	330	*	
	20	15	DBR-12-015	7	178	29	737	18	457	*	
$\begin{gathered} 400-460 \\ \text { Volt } \end{gathered}$	7.5	5.5	DBR-14-5A5	5	127	14	356	13	330	*	
	10	7.5	DBR-14-7A5	5	127	14	356	13	330	*	
	15	11	DBR-14-011	5	127	21	533	13	330	*	
	20	15	DBR-14-015	5	127	21	533	13	330	*	
	30	22	DBR-14-022	5	127	28	711	13	330	DU-406S	1
	40	30	DBR-14-030	5	127	28	711	13	330	DU-407S	1
	50	37	DBR-14-037	7	178	29	737	18	457	DU-405S	2
	60	45	DBR-14-045	7	178	29	737	18	457	DU-406S	2
	75	55	DBR-14-055	14	356	29	737	18	457	DU-407S	2
	100	75	DBR-14-075	14	356	29	737	18	457	DU-406S	3

Notes: Other values can be ordered for increased torque and/or duty cycle.

* No braking unit required.

For connection diagram refer to braking unit instruction manual.

Connection diagram of braking unit/braking resistor
(1) One braking unit

00 Installation of jumper pin
DBM DBS
230 V
400/440V OO 200/220V
380 V 00
Jumper

(2) Two braking units

Jumper

The above examples show jumper installation when the inverter supply voltage is 200/220 V and $400 / 440 \mathrm{~V}$.

Precautions

1. Remove the jumpers from E1-TA and E2-TC if thermal relay output terminals TA, TB, and TC are used in external circuits.
2. When two or more braking units are used, switch the jumpers from the master (DBM) to the slave (DBS), and vice-versa. If one braking unit is used set the jumper in the master (DBM) configuration. The original setting is DBM. If the power supply is 230 VAC for the 200 V class or $380 \mathrm{~V} / 460 \mathrm{~V}$ for the 400 V class, properly configure the jumpers for the applied voltage. Original settings are 200/220 V for the 200 V class and $400 / 440 \mathrm{~V}$ for the 400 V class.
3. If two braking units are used, connect the P and N terminals from the braking units to the P and N terminals on the inverter.
4. The wiring distance between the inverter and braking unit must be less than or equal to 5 meters
(16 ft) and the distance between the braking unit and braking resistor shall also be less than 5 m (16 ft.). Wiring to be twisted. When two or more braking units are used, use twisted wire for M1, M2, S1 and S2.
5. Do not locate near flammable material as the temperature rise of the braking resistor may exceed $150^{\circ} \mathrm{C}$.
6. Install the braking resistor in a well-ventilated area.
7. Incorrect connection of terminals P, N, and $P R$ will result in failure of the inverter and braking unit.
8. When resistors other than those specified are connected, the braking unit may inadvertently fail.
9. Do not touch terminals or jumper pins if the charge lamp is lit even after the power is turned OFF.

5.5-15 kW/200 V class 5.5-75 kW/400 V class

22 kW or > 400 V class Note 8

Kind	Terminal Code	Name of terminal	Function	
	R, S, T	AC power input	Commercial 3-phase power supply.	
	U, V, W	Inverter output	3 -phase motor.	
	P, P1	Line reactor connection	Remove the jumpers between terminals P and P1 to allow for connection of the optional DC line reactor.	
	P, N	Braking unit connection	Connection for the Optional Braking Unit Card.	
	P, PR	Braking resistor connection	Optional braking resistor connection. The PR terminal is provided in the 5.5-15 kW unit.	
	E	Ground	Inverter chassis grounding terminal.	
	TX1, TX2, TX3, S1	Supply voltage selection	Supply voltage selection terminals. Only on 460 V class units of 15 kW or above.	
	r, r1, s, s1	Control power selection	For inverter supplied control power, connect r-r1 and s-s1, respectively. For externally supplied control power remove the r-r1 and s-s1 jumpers; input 230 VAC power to r1 and s1. (Input 230 VAC to both 230 and 460 V units). The external control circuit terminal block (see note) is on the driver card.	
	+V	Power supply for the external speed potentiometer	Power supply for the external speed (frequency) potentiometer (variable resistor: 1-5k Ω). 10 VDC; maximum supplied current 10 mA .	
	VRF	Frequency adjustment input voltage	When 0-5, 0-8, or 0-10 VDC is input, the output frequency reaches its maximum at $5 \mathrm{~V}, 8 \mathrm{~V}$ and 10 V , respectively. Select paramater $\mathrm{A} 00 / 12$ for $0-5,8$, or 10 V operation.	
	IRF	Frequency adjustment current input	$4-20 \mathrm{~mA}$ (DC), the output frequency reaches its maximum at 20 mA , minimum at 4 mA . Input resistance: 250 2 .	
	COM	Common for analog inputs	Common terminal for frequency adjustment signals (terminals: +V, VRF, and IRF).	
	FR	Forward rotation	FR-BC contact closed results in forward rotation; deceleration/stop when the contact is open.	
$\frac{5}{6}$	RR	Reverse rotation	RR-BC contact closed results in reverse rotation; deceleration/stop when the terminals are open.	
	ES	External fault	When the contact terminals ES-BC are closed, the inverter faults and an alarm signal is latched and output to FA and FB. To re-start the inverter a reset must be initiated by closing RST-BC. External relays can be used to fault the inverter by closing ES-BC, the fault can be software selected to External Fault (NO) or External Fault (NC). The factory default External Fault (NO).	
	MBS	Coast Stop	When the contact terminals MBS-BC are closed, a coast stop is initiated. Operation begins from 0 Hz when the MBS-BC is re-opened and the signal FR or RR is closed. When the digital input is set for catch on the fly start, operation from coast stop is allowed. No alarm signals are output.	
	JOG	Digital input terminal 1	The following functions can be selected: Preset speed selection, JOG selection, 2nd deceleration selection, B mode selection, local/remote operation command, frequency command selection, hold selection, frequency increase, frequency decrease, and catch on the fly function.	
	AD2	Digital input terminal 2		
	BMD	Digital input terminal 3		
	DFH	Digital input terminal 4		
	DFM	Digital input terminal 5		
	DFL	Digital input terminal 6		
	RST	Alarm reset	When the terminals RST-BC are closed, the inverter is reset to allow for normal operation.	
	BC	Common	Common for digital input signals.	
¢	FRQ+, FRQ-	Frequency counter output	Depending on the selection (see parameter E02), a 0 to 1 mA DC current is output on terminals FRQ+ and FRQ-in proportion to the output frequency of the inverter. Digital pulses with the same frequency as the output frequency of the inverter can also be selected for output. Factory default setting is a pulse output frequency at 1 mA for 60 Hz . The input impedance of the meter shall be less than 500Ω.	
$\stackrel{\text { ¢ }}{ }$	UPF	Digital output terminal 1	The following functions can be selected: fault, in-operation, at frequency, frequency detection 1, frequency detection 2, current detection 1, current detection 2, run signal initiated (FF/RR), under-voltage, thermal alarm, stall operation, retry attempts exceeded, torque detection 1 , torque detection 2 , and zero speed detection function.	Allowable load DC24V 50 mA MAX
훈	DRV	Digital output terminal 2		
\bigcirc	X1	Digital output terminal 3		
둥	X2	Digital output terminal 4		
긍	OM	Common open collector output	Common terminal for open collector transistors.	
	FA, FB, FC	Error Detect	Contact point output Normally Open or Normally Closed Form C contact. Fault: FA-FC closed; FB-FC open Normal: FA-FC open; FB-FC closed	Contact Ratings AC 230V 1A MAX DC 30V 1A MAX

[^2]15 kW : IPM card
20 kW or more: Driver card

OUTSIDE DIMENSIONS

37, 45kW 400V

Numbers in () = inches

55, 75kW 400V

[^0]: Note: The menus C14 and C15 are displayed and can be set only when the control method selection C12 is set to 1: Sensorless.

[^1]: Recommended wiring: twisted, shielded wire.

[^2]: Note: $5.5-11 \mathrm{~kW}$: Bus bar card

